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AlJstrad-This paper presents a study of the response of layers of ftuid·filled porous elastic
(POroclastic) materials to surface tractions moving at constant speed.

Solutions are obtained to Biot's equations for poroclastic materials usinS a Fourier Transform
Method. Altboup physical domain behavior is found usiDJ a Fast Fourier transform for numerical
inversion, it is shown that the distribution of fluid low, prclIIUJ'C, stress and displacement may be
determined dircctly in the transform domain without rccoW'le to inversion.

Layer response to a moving porous indenter and to a moving fluid pressure wave is determined.
The flow. pressure and stress distributions for the two CIIICI are found to be markedly dilf'erent.

INTRODUCTION
The response of fluid-filled porous elastic-()r poroelastic-materials to load is a subject
of importance in a number of fields. One particular class of poroelastic problems, that of
a moving surface traction acting on a poroelastic layer or half-space, occurs in such
disparate technologies as ocean engineering, soil mechanics, tribology, biomechanics and
paper manufacturing.

Mukhopadhyay and Kingsbury[l] studied the flow and deformation in a layered
poroelastic system subjected to a moving Gaussian shaped surface traction which was
continuously distributed over both the solid and fluid phases of the material system. They
found a speed dependent asymmetric distribution of flow through the surface, with fluid
imbibition in front of the moving load and exudation behind. Lai and Mow[2] considered
a poroelastic layer composed of incompressible constituents loaded by a moving porous
indenter. The surface traction for this case was parabolic in shape and finite in extent. The
moving load was carried by the solid phase only while the fluid phase could flow freely
through the indenter. Their results also show an asymmetric surface flow but one with
exudation in front of the moving load and imbibition behind. Yamamoto et al. [3], applied
a traveling sinusoidal pressure wave to the surface of a poroelastic half-space with
compressible constituents and determined a material property dependent phase lag of the
pressure field which increased with distance into the layer. The predicted pressure gradient
implies a surface flow into the layer ahead of a wave crest and out of the layer behind.

The preceding results suggest that fluid flow and pressure as well as solid phase
deformation are effected both in distribution as well as magnitude by poroelastic material
properties or by representation of the moving surface traction. In the present analysis it
is shown that poroelastic layers are capable ofexhibiting both described types of behavior
and that the different types of flow fields are associated primarily with the distribution of
the surface traction between the two phases.

It is also shown that the distribution offlow, pressure and deformation can be predicted
on the basis of the solutions of the governing equations in the Fourier transform domain
so that recourse to numerical evaluation of the solutions is required only to demonstrate
the details of the predicted solution.

GOVERNING EQUATIONS

Beginning in 1941, Biot published a series of papers[4-9] dealing with a general theory
of behavior of what are now termed poroelastic materials. A less intuitive approach than
Biot's has been adapted by a number of investigators including Adkins[lO, 11], Green and
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Adkins[12], Green and Naghdi[13], Bowen[14, 15], Rice and Cleary[16], and others. The
Biot theory is a special case of these more complete formulations but, as has been pointed
out by Rice and Oeary[I6), the latter may present little or no improvement on the classical
Biot formulation for quasi-static elastic deformation problems.

The quasistatic poroelastic theory as presented by Biot is based on several fundamental
assumptions. The two-phase poroelastic material is considered to be composed of a solid
framework possessing a statistical distribution of small pores which are filled with, in
general, a Newtonian viscous, compressible fluid. The bulk material is assumed to be
homogeneous on a microscopic scale and the pores to be all interconnected. The
deformations of the solid and fluid are taken to be reversible with the solid skeleton being
linearly elastic and undergoing small deformations. The fluid flow is assumed to follow
Darcy's law of filtering. The fluid shear stresses are assumed to be small compared to the
fluid pressure and the solid phase stresses. The inertia forces, considered in the dynamic
theory, are also considered to be negligibly small.

The reference porosity, "j', of a poroelastic material is defined as the ratio of pore
volume to the total volume of the undcformed material. In the subsequent analysis the
actual porosity is assumed to be unchanged from the reference porosity. As discussed by
Bear[17], the assumption ofhomogeneity implies that the porosity is also equal to the ratio
of the void area to the total area of any cross section of the bulk material.

The average stress on the bulk material, Tv, which is called the total stress is related
to the actual solid phase stress, (l1j' and the fluid pressure, p, by the relationship:

(1)

It is convenient to introduce effective solid (Sj/) and fluid «(I) stresses through the
following definition.

(2)

Although it is possible to define a solid displacement field within the solid phase and
a fluid displacement field within the fluid phase, the locations of the solid and fluid phase
must then be monitored in order to know which displacement vector is defined at an
arbitrary point within the material. To eliminate this ambiguity, solid displacements and
fluid displacements, Uj , UI, are introduced such that at each point within the material both
an average solid displacement and an average fluid displacement are defined.

The deformation of the poroelastic material is expressed in terms of the average
displacement fields in the usual manner, assuming strains and angles of rotation are small
compared to unity. The components of strain for the solid, l/j' are defined as:

(
au au,)

£Ij= a~+ a~1 .

Similarly, the solid dilatation, £, and the fluid dilatation, e, are defined by:

(3)

aUj

e= ax
i
' (4)

An additional measure of solid and fluid strain, C, may also be introduced. This
quantity, defined as

C=(e-£) (5)

represents the increment of fluid content in the porous material during deformation.
It is seen that the state of strain in a poroelastic material may be described by six

components of solid strain and the fluid dilatation, and the state ofstress may be described
by six components of solid stress and the fluid stress.
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Four independent poroelastic coefficients are required to characterize a linear isotropic
poroelastic material. The following form of stress-strain relations, introduced by
Biot[6-8], and by Biot and Willis[18], is employed in the present formulation

Sij =2JJ£u + lJ~M. + ye)

t1 = y£ + pe.

(6a)

(6b)

The measurement and physical interpretation of the coefficients Jl, 1, ')I, and P is
discussed by Biot and Willis[18], and by Kingsbury[19].

In the absence of body forces the total stress components satisfy the stress equilibrium
equations:

Otlj
ax/=O. (7)

Equations analogous to the Navier equations of elasticity are obtained by combining
the constitutive equations with the stress equilibrium equations in terms of the average
fluid and solid phase stresses (I), (2), employing eqns (6) and (7), and assuming the material
coefficients are not functions of the spatial coordinates, the following equations of
equilibrium result.

(8)

Formulation of the governing equations is completed by stating Darcy's Law of
filtering in terms of the variables of the system. This equation may be written as[17, 20]:

(9)

where K is the permeability and '1 is the dynamic viscosity of the fluid. The term,
(0/01)( Vj - uj ), is the velocity of the fluid phase with respect to the solid phase, which is
called the filtering velocity. As shown by Biot[9] the rate of energy dissipation per unit
volume (D) is related to the filtering velocity components by the equation:

(10)

In the present analysis eqns (8) and (9) are recast in terms of the variable' and the
solid phase displacement components in the following form:

(11)

(12)

Equation (12) indicates that' is dissipative in nature, so eqn (II) can be viewed as the
classical elasticity formulation subjected to a dissipative body force.

If the variable' represented temperature, then eqns (10) and (11) would be a form of
the uncoupled equations of thermoelasticity. The subsequent method of solution could
therefore be applied to problems of thermoelasticity although the particular poroelasticity
boundary value problems solved in this paper do not correspond to commonly encoun
tered boundary value problems of thermoelasticity.
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SOLUTION FOR THE MOVING LOAD PROBLEM

The general problem to be considered is the response of a poroelastic layer of thickness
h to a surface traction moving with constant speed, VL • The traction distribution which
is assumed to be uniform in the Z direction (plane strain), may be a continuous or
discontinuous function of x, and may act on both the fluid and solid phases or may act
on the solid phase only. Explicit time dependence in the governing equations is eliminated
by a coordinate transformation from a fixed (Xl' X2) coordinate system to a system (x, y)
which is moving to the left (negative XI direction) with the moving surface traction so that:

The plain strain form of eqns (11) and (12) can then be phrased as:

where

(13a)

(I3b)

(14)

U::;;; uJ:lh, v = u,/h

and the x and y coordinates have been non dimensionalized with respect to h so that the
layer thickness is unity.

It may be shown[9, 18], that f < ex S I and that ex = 1 if the material comprising the
solid phase is incompressible.

Solution of eqns (I3) and (14) proceeds by taking the Fourier transform with respect
to the "x" coordinate using the following Fourier transform pair:

where h(x) represents any of the dependent variables.
The transformed equations may then be phrased in the following form:

it" + iwA6' - w2(1 +A)u = - iwB(

(1 + A )6" + iwAu' - w2V = - B('

(I Sa)

(ISb)

(16)



whcre

Response of poroelastic layers to moving loads 503

12= w 2 + iwC,

and superscript "primc" indicatcs differentiation with respect to "y", The general solution
to eqn (16) is:

( = C. sinh (£y) + C2 cosh (£y). (17)

(18a)

Upon substitution of eqn (17) into eqn (IS) the following solution to that pair ofequations
is determined:

u = [(iB. - BJ + ( .04.04:2) (iB) + B.) + (iB) - B.)yJ sinh wy

+ [(iBI + B2) + ( .04.04:2) (iB) - B.) + (iB) + B.)yJ cosh wy

+ (I +A~:2_fi)[CI sinh£y + C2 cosh£y]

v= [(B. - iBJ + (B) - iB.)y] sinh wy + [(B. + iBJ + (B) + ;B.)y] cosh wy

+ :k 2 k2) [C2 sinh £y + C1 cosh £y].
(1 + A (w -

(18b)

The subscripted constants BJ (j = I - 4) and C/ (; = I, 2) are to be determined by the
boundary conditions.

Since the above solutions are singular at w =0, solutions for that case are found
separately. The governing equations with the parameter w equal to zero become:

u"=o

(I + A)B" = - B('

("=0.

The general solution to these equations is:

• -BD. 2

v = 2(1 + A)y + FLY + F2

(=DIY +D2•

(19a)

(19b)

(20)

(2Ia)

(2Ib)

(22)

Once again, the subscripted letters E, D, F, are constants to be determined by the
boundary conditions. The solutions at co .... 0 complete the general solution of the
transformed equations and, as will be discussed, they also provide significant information
by themselves.

The bottom (y =0) of the layer is considered to be attached to a rigid, impermeable
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foundation, so the boundary conditions are:

oa
u(x, 0) =0, V{x, 0) = 0, oy (x, 0) =O. (23)

It will be assumed that the moving load does not impose a shear traction on the surface
of the layer. When phrased in terms of displacements this condition becomes:

ou/oy(x, 1) +ov/ox(x, 1) =O. (24)

The action of the moving load on the surface may be prescribed in terms of solid phase
normal displacement or normal stress and of the normal filtering velocity or pressure. One
problem considered here is that of a moving pressure wave, p,(x), which is supported by
both the fluid and the solid phases. This is represented by:

S"~.I = -(I-f)p,(x), a~.1= -fp,(x). (2Sa)

The second problem is that of a moving porous indenter which imposes a surface stress
on the solid phase but which allows the fluid to drain freely through the surface. This is
represented by:

S,,I'.I = - p,(x), al'.1 = O. (2Sb)

The solutions for the problems represented by each of these surface stress conditions
are obtained by determining the constants of integration appearing in eqns (17), (18), (21),
(22) after expressing the boundary conditions in terms of the transform variables.

These solutions may then be phrased in the following form:

u=B3HII(y, (J) +B1H 11(y, (J) (26a)

v=B)H11(y, (J) +B2Hn(y, (J) (26b)

a = B3H31(y, (J) + B"HJ2(y, (J) (26c)

au
(26d)oy =B)GII(y, (J) + B2GI2(y, (J)

OV
(26e)ay = B)G21(y, (J) + B2Gn(y, (J)

oa
(26f)oy =B)G31(y, (J) + B2GJ2(y, (J).

Where the functions HIi(y, (J) and GIi(y, OJ) are common to both surface traction
problems but constants B2 and B) are different for the cases described by eqns (25a) and
(2Sb). These functions and constants are presented in Appendix A.

It is easily shown[21] that the Nth moment of a function h(x) about the point x =0
is given by:

Also, the distance to the centroid of h(x) is:

h _ -dli/dOJI",.o
""" - ih(O)

(27)

(28a)
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and the variance "i2" is given by:

50S

(28b)

From the above results it is seen that information concerning the patterns of surface
flow, pressure distribution, and displacement can be obtained without inversion of these
variables to the real domain.

The values of the desired functions in the transform domain at w - 0 are given by-or
obtained from-eqns (21) and (22) with appropriately specified values of the constants of
integration.

To obtain the values of the first derivities of these functions at w - 0, eqns (I S) and
(16) are differentiated with respect to Cl) and the transform variable then set equal to zero.
This process yields the equations:

d("1 A-d -iCC(O,y)-O
Cl) ",.0

dU"l A-d + i.4I1'(O,y) - - iB{(O,y)
Cl) ",.0

dV"l de'(I +A)-d + tAu'(O,y) - - B-
d

(O,y).
Cl) ",.0 W

(29)

(30a)

(30b)

Since (O,y), u(O,y) and I1(O,y) have been obtained, eqns (29) and (30) may be
integrated with respect to y and the resulting constants of integration evaluated employing
the boundary conditions appropriate to either the moving pressure wave problem or the
moving indenter problem. Once the first derivatives of the transformed variables with
respect to Cl) have been evaluated at Cl) == 0, the process may be repeated as necessary to
obtain derivatives of any order.

RESULTS

Expressions for the moments of the displacement, flow and stress variables obtained
by evaluating the transformed variables and their derivatives at w =: 0 are next presented.
The layer response indicated by these analytical solutions is then compared with results
in graphical form obtained by numerically inverting the transform domain solutions using
a discrete inverse Fourier transform algorithm.

Response of the poroelastic layer to the moving surface pressure wave (eqn 25a) is
considered first. The average value of the "y" displacement and its first moment are given
by:

where

f
OO - (I - ex) fao
_rov(x,y)dx== ex/fG y _""p,(x)dx

fro xv(x, y) dx = ND) rf _ (1- ex)ND2 ] (y _ y3/3) f"" p,(x) dx
-00 G t G _""

G == 2 +ND. - (exIf - I)ND2•

(3Ia)

(3Ib)

It may be shown that G > 0[22].
Equation (3Ia) shows that the average y component of the displacement varies linearly

with y and that if the material comprising the solid phase in incompressible (ex == 1) its value
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is zero. The moment is proportional to the load and, through (ND3), to the speed of the
moving wave. Since ND3 is intrinsically positive and the bracketed term in cqn (3Ib) has
been found to be positive for a variety of poroelastic materials[22], the sign of the moment
is therefore positive which means the surface displacement has a greater positive value
behind the wave.

The integral of the y component of the filtering velocity is equal to zero indicating there
is no net fluid imbibation or exudation through the surface. By cqn (9) the first moment
of this filtering velocity component is proportional to the first moment of oa lay which is
given by:

f"" [ (l a.)ND] fco-co xoa lay dx = +ND3 1- - 0 2 Y -co p,(x) dx. (32)

The sign of this term indicates fluid exudation occurs behind the pressure wave.
The centroid of the fluid stress, a, is given by:

=ND3 [/- (I - a.)ND2 ](1 _ 2)
~n ~ 0 Y . (33)

Since the position of the centroid shifts in the positive x direction as y decreases, the
centroid of the fluid pressure increasingly lags behind the centroid of the applied load with
distance from the surface. This shift, which increases with pressure wave speed and layer
thickness, is consistent with the preceding observation concerning the flow pattern
through the surface.

Results for the totally permeable indenter problem, where the entire load is carried by
the solid phase, are next presented.

Although the average value of the fluid stress is zero for this case, the first moment
of the fluid stress is given by:

(34)

This result indicates increased pore pressure exists ahead of the load and a region of
decreased pore pressure behind it.

The integral of the "y" component of the filtering velocity is also zero, while this first
moment of this quantity:

(35)

indicates that fluid exudation exists ahead of the load for this surface traction and
imbibation occurs behind.

Finally the average value and the first moment of the "y" displacement component are
given by:

f
co - y fco-co v(x,y)dx = «./fG _cop,(x)dx

f
co ( )dx - - ND2ND3 (y - y

3
/3) fco () dxxv x, y - 0 2 2 P, x .

-co -co

(36a)

(36b)

The sign of this moment indicates a greater positive surface displacement in front of
the pressure wave than behind it.

To illustrate the preceding results, the analytical solutions obtained in the transform
domain were inverted numerically using an FFf algorithm. The surface traction employed
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for both the moving pressure wave and the porous indenter problems, which is shown in
Fig. 1, is given by:

where the amplitude is chosen to give a unit non-dimensional load. In the subsequent
figures displacement, stress, and velocity are non-dimensionalized by multiplication by Ifh,
a/JIl, and l/VL respectively.

The material system considered is wool felt-water whose poroelastic properties as
reported in [22) are presented in Appendix B.

The effects of surface traction speed and type on normal surface displacement are
shown in Figs. 2 and 3. The maximum displacement is greater under the indenter because
the surface load is not shared by the fluid. As predicted by eqns (31b) and (36b) the
outward displacement is larger behind the pressure load and in front of the indenter.

The effects predicted in the co = 0 solution for the surface filtering velocity are
illustrated in Figs. 4 and 5 which shows exudation ahead of the indenter and imbibation
behind, while exudation is greater behind the pressure wave. At the lower speed the
pressure field produces the greater filtering velocity while the reverse is true at the higher
speed. Since by eqn (10) the energy dissipated by the moving traction is proportional to
square of this quantity, the relative energy dissipated by the two traction conditions
appears to be speed dependent.

Finally, fluid stress at the lower surface of the layer is shown in Figs. 6 and 7. Consistent
with analytical predictions, the indenter causes compressive stress in the fluid ahead and
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relative tension (lower pressure) behind it while the reverse is true for the pressure wave.
These effects are accentuated with increasing speed.

Because of the very different results for the response to the two types of surface
tractions, it may be concluded that great care should be taken to accurately model the
particular physical problem under investigation.
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APPENDIX A
Functions appearing in eqn (26)

HII S [(Q) + i>(R,fi : WZ+ ;)+ (i - QJyJsinh wy + [(Q) + i>(R'fi : WZ+ y) + (i - Q);Jcosh wy

+ RZ~(wz: fZ) l (1- iQ) sinh £y + Rt(wz: .fi)[R7C1 - iQJ+ (I + iQJR)(fZ:Zw)Jcosh £y

Hlzs Q{R1(fZ:wz)+ ~ -y}inhwy +[2+ Q{ R{fZ:wz)-~+y)]COShWY

(
w ) w w [ ( fZ - W

Z
) fZ - WZJ- RzR6 WZ _ fZ "k iQz sinh £y + R6 WZ _ £2 iQz R) ---;r- - Rz - /4-w- cosh £y

HZ1 = [(I - iQ)(R I fZ: wZ+ Y)] sinh wy + [(I - iQ)R1.fi:WZ+ (I + iQJyJ cosh wy

+RzR1(wZ:£2)(I-iQ)COSh£Y +R1(WZ~.fi)[(I +iQJR) fZ:zw
z
+(I-iQ)Rz}inh£Y

Hzz =- [2i + iQz( R1fZ:wZ+ Y)}inhwy + iQ{y - R'fi :WZJcosh wy - iQzRzR1(WZ : fi) cosh £y

w
H32 =2R';Qz sinh wy - 2R.;Qz cosh wy - RzR, "k iQz sinh £y

+~iQ{R) fZ:zw
z
_Rz)_/4(fZ:wZ)]COshkY

Gil S [(Q) + i) + w{(Q) + i)(RI £1:wz+ ;)+ (i - QJY}] cosh WY

+[(i - Q) + W{(Q) + i)(R. P:wz+ Y) + (i - QJ ;}]sinh wy

+ RzRtwz~£2(1 - iQ)coshkY + Rt(wz~£1XR7Cl - iQJ+(I + iQJR) f2 :zw1sinh£Y
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GI2 =[Q2+Q2W{R1.0:W2+; -Y}}OShWY +[W{2+ Q2( R,fi : W2 -; +Y)}-Q2}inhWY

(
W2 ) wf [ ( .0 -w

2
) .0 -W

2J- R2R6 w2-.0 iQ2 cosh fy + R6 w2-.0 iQ2 RJ --;r- - R2 - R.-w- sinh fy

G21 = [W{(I - iQJ)(R,fi:w2+y)} +(I + iQJ)}OSh wy

+[ W{(1 - iQJ)R 1.0:w2+(I + iQJ)Y} +(I - iQJ)}inh wy + R7(W2~ .0)[(1 + iQJ)RJ.0:2W
2

+ (I - iQJ)R2Jcosh fy

G22 = [iQ2- W{2i + iQ2 ( R1fi : w2+y)}] cosh wy +[ WiQ2 (y - Rip:wi) - iQ2}inh wy

- iQ2R2R7(W2~.0)SinhfY +R7C2~.0)[iQ{RJ .0:2W
2
- R2) - R.(.0:(

2

)JCOShfY
GJ1 =- 2RR(1 - iQJ}w cosh wy - 2R.(1 + iQJ}w sinh wy + R2R,w(1 - iQJ) cosh fy

.0 -w
2 (.0-w

2
)+ I4R2+ RJ --;r- + iQJ R] --;r- - R2 f sinh fy

G]2 =2R,iQ~ cosh wy - 2R.iQ2W sinh wy - R214wiQ2 cosh fy

where

R _ 2a.IIBIA
I - -1-+-A-'----/X-'-lfB=

R - (I +A) R
2- B I

R7 =- i14

R, = /XIIBIA

R12 = yiP

(A + 2)(A + I)
RJ = AB

R.=i2(1 +A)
B

(A +2)
Rl=-A-

B
R =i--

6 1+A

QI = sinh f[iRilc(iclwRJ- R2»)

[
(I+RJ [ (I + Rl )]

- coshf[R2R7iwlc)- sinhw w(l-iR I /c)--2-+ coshw w(1 +iR1/c)--2-

Q2 = IIQ,{2w sinh w + R.14k sinh f}

QJ =if[w(i + R I/,) + i (I ~ R5
)} coshw + sinh w) + sinhf[i14klc(R2+ iclwRJ»)

+ coshf[iwlcR2RJ}.

Pressure field

B] = (-:.) V(iwR If,H12 +RIIG22) - [(I -I) - IRI:JH12}~.1

B2=( -/,) {HJ1[(1 - I) -IR,~ - l(iwRII/f1l + RIIG21)}~.1

Ll =[HJI(iwRIOHI2 + RII G22) - HJl(iwRloHli + RIIG21)]~.I'



Response of poroelastic layers to moving loads

Indenter

APPENDIX B
Poroelaslic ma/erial constants of wool felt-water (Ref (22»

511

A=7.9 x !OSPa
II = 5.3 x 10' Pa
/J-4.0 x 100Pa
(I =1.2 x 100Pa

f=0.7
«=0.9
K-3.7 x 1O-9 cm2

" - 0.89 x 110- )Pa-sec.


